
Ada Runtime Error Generator

Research Document

Date:13/11/2020

Student: Derry Brennan

Student number: C00231080

Supervisor: Chris Meudec

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 1

DECLARATION

I hereby declare that this research project titled “Ada runtime error
generator” has been written by me under the supervision of Dr. Christophe
Meudec.

The work has not been presented in any previous research for the award of
bachelor degree to the best of my knowledge.

The work is entirely mine and I accept the sole responsibility for any errors
that might be found in the work, while the references to published materials
have been duly acknowledged.

I have provided a complete table of reference of all works and sources used
in the preparation of this document.

I understand that failure to conform with the Institute’s regulations
governing plagiarism constitutes a serious offence.

Signature: Derry Brennan Date: 29/04/2021

Derry Brennan (Student)

C00231080 (Student Number)

The above declaration is confirmed by:

Signature: Chris Meudec Date: 29/04/2021

Dr. Christophe Meudec (Project Supervisor)

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 2

Abstract
“Ada is a state-of-the-art programming language that development teams
worldwide are using for critical software: from microkernels and
small-footprint, real-time embedded systems to large-scale enterprise
applications, and everything in between [28] .” It is particularly used by the
military, avionics and many other fields where safety is of critical
importance.

With the reliance of safety in Ada it is pertinent to look into the ability to
have run-time error free programs. An error that happens in the field could
cause the loss of life or the destruction of property. My goal is to produce a
prototype proof-of-concept tool which will be able to take Ada code and be
able to tell the programmer if there is any possibility of runtime errors in
their code and where. This document will be focused on my research into
the different areas required for this project such as Ada itself, parsers and
the different types of runtime errors.

This research project is based upon the work of my supervisor's software
Mika, an automated test input generator for Ada code. The aim is to expand
and build upon this software and if it is possible to expand it into the areas
of runtime error detection.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 3

Table of Contents

Abstract 2

Table of Contents 3

Table of Figures 7

1 Introduction 8

1.1 Ada runtime error generator 8

1.2 Runtime Errors/Exceptions 8

1.3 Ada 10

1.4 Parsers 13

1.4.1 Steps of language processing 14

2. Motivation 17

3.Market Analysis 23

4. Similar Tools 25

5. Relevant Technologies and Algorithms 29

5.1 Software Fault Tree Analysis (SFTA) 29

5.2 Constraint Satisfaction Problem (CSP) 29

5.3 Symbolic Execution 30

5.4 Prolog 32

5.5 SAT solver (Boolean satisfiability problem) 32

6.The Learning Curve 37

6.1 Overview of the Process 37

6.2 Compilation 39

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 4

6.3 Parsing 42

6.4 Parsing additions 45

7. Limitations of implementation 56

8. Mika Extension for Text Editor 60

8.1 Visual Studio Code Extension For Mika 66

9. Testing the Limitations of Mika 68

10. Conclusion 69

11. Bibliography 71

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 5

Table of Figures
Figure 1 Sample of type ranges in Ada 9

Figure 2 Sample of Ada code 11

Figure 3 Simple code snippet 14

Figure 4 Example of lexical analysis tokenization 14

Figure 5 Example of a parse tree [29] 15

Figure 6 example Ada .ads file 18

Figure 7 main file used to execute the example program 18

Figure 8 Example Ada program that will produce a division by 0 error 19

Figure 9 Symbolic execution performed on the example program 20

Figure 10 output of the program in fig. 8 20

Figure 11 Test data generated by the Mika tool to provide full coverage
through the fig. 8 program 21

Figure 12 Mika tools log output, including the division by 0 error 22

Figure 13 Example code GNATProve 27

Figure 14 output from GNATprove run on fig 13 27

Figure 15. Sample code, (Baldoni et al., 2018)[18] 31

Figure 16. Symbolic execution tree, (Baldoni et al., 2018)[18] 31

Figure 17 - DIMACS Format, Source: SpringerLink [Online] 34

Figure 18 Chart of the Mika parsing steps 38

Figure 19 Steps taken to generate test input 39

Figure 20 - Project with output files in VS2019 40

Figure 21 - Error received trying to execute the project 41

Figure 22 - Linking the project to required files from mika 41

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 6

Figure 23 - the correct way to obtain executable file 42

Figure 24 - The output from compilation, with debug specified 42

Figure 25 - IF statement from the ada.y grammar definitions 43

Figure 26 - The definition of safety to being the integer 5 44

Figure 27 - How the parser was used to build up a prolog term in
example.pl 45

Figure 28 - constraint.adb example used to display constraint errors 46

Figure 29 - output from the compilation and execution of constraint
above 46

Figure 30 - Ada code with custom type and custom range 47

Figure 31 - Output showing the constraint error of exceeding range of
type 47

Figure 32 - Expanding the complexity while testing ranges 48

Figure 33 - Compiler still finds the error even when inside an else branch
48

Figure 34 - Ada code to showcase the ‘First & ‘Last of types 49

Figure 35 - Output from fig 34 49

Figure 36 - A further exploration of the range of a type 50

Figure 37 - Output from fig 36 50

Figure 38 - A sample Ada program with an array used within it 51

Figure 39 - How the array is represented within the generated
constraint.pl file 51

Figure 40 - Additions in the ada.y file for when an indexed_component is
encountered 52

Figure 41 - constraint.pl after the additions to the ada.y file had been
implemented initially 53

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 7

Figure 42 - constraint.pl after using the tic() function instead of the
character ‘ 53

Figure 43 - Sample Ada code used to test number overflows 54

Figure 44 - Output from fig 43 54

Figure 44 - change in the code to exceed the range of Custom_Int X(4)
-T(42) = -38 outside the range of Custom_Int 55

Figure 45 - Compiler warning and error on the execution of the code
from fig 44 55

Figure 46 - Compiler warning and error on the execution of the code
from fig 44 57

Figure 47 - Ada.y additions for indexed_component, including the tic() in
place of the character ‘ 58

Figure 48 - Source code reconstructed in the constraint.pl file 58

Figure 49 - an unexpected outcome within constraint.pl, rune was being
called inside the package_specifications 59

Figure 50 - Example of Sublime Text GUI 60

Figure 51 - Example of Emacs GUI 61

Figure 52 - Example of Lisp code 62

Figure 53 - A sample program that would produce a division by zero
once B reached 0 68

Figure 54 - Output from Mika while running with the exception flag 68

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 8

1 Introduction

1.1 Ada runtime error generator

This research document contains the research conducted in order to
construct this Ada runtime error generator. The runtime error generator has
been constructed to be able to take some Ada code as an argument and
return if there is the possibility of a run-time error to occur within that code.

Initially as a proof-of-concept the project will focus on the main run-time
error of division by zero and will expand upon that as the project continues.

For the construction of this tool the project will be basing this work on
previous work done by Dr. Chris Meudec, the project’s supervisor.

1.2 Runtime Errors/Exceptions

Runtime errors [3], sometimes called runtime exceptions in computer
programming, is the term given when something unexpected happens
during the execution of the program. The most basic example of this would
be a division by zero error.

This may occur when asking the user for input to perform a division by and
the user enters a zero. This would cause the program to crash if the
programmer had not thought of this possibility and provided exception
handling to prevent the crash from occurring.

These types of errors are impossible for the compiler to catch as the values
are not set before the user enters their input and if there is no exception
handling, such input could cause the program to cease functioning at a
critical moment.

There are other types of runtime errors too such as providing inaccurate
results to calculations. For example in an 8 bit system the range of integers
is up to 255 so if one were to add 2 to this one would expect to get 257 as

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 9

the result. The result returned would be actually 1 as the value wraps back
around to and starts from zero again once it has reached its maximum
value. There is a modular type in Ada that handles this behaviour if it is
expected.

Ada on the other hand checks its integers for overflow. There are 2 types
within Ada. Machine level overflow, where the number is greater than the
maximum value or less than the minimum value, which would yield a
Storage_Error. The other is a Type-Level overflow where the operation on an
integer exceeds its given range defined for a type which would yield a
Constraint_Error. Both of these are run time errors.

Figure 1 Sample of type ranges in Ada

Numbers in computing in modern times often are of an order of magnitude
larger than this 8 bit example now with 64bit systems handling values up to
18,446,744,073,709,551,615 but this overflow can still occur if not
accounted for.

Out of bounds exceptions are another type of error that all novice
programmers experience at some stage of their education. If we make
reference to an array of data but use an index or pointer that is not correct
depending on the language being used, it could either be accessing
memory not associated with our array and thus getting back incorrect
values, or even overwriting memory with a new value that was not intended
causing unknown errors at a future stage.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 10

Some languages like Java have in-built out of range exceptions, but others
like C or C++ do not and will let these instructions happen which can lead to
undefined behavior.

1.3 Ada

Ada [1] is the product of a competition run by the US military in 1975 to find
a secure and safe language to consolidate the multiple languages that they
have been using previously on their embedded systems. The Department of
Defense in America set out a list of requirements needed in their higher
level languages and the first iteration of this was called project Strawman
[2]. After a competition between four contractors, Ada, or as it was known
then project Green, was selected as the winner. Jean Ichbiah was the leader
of the group who produced Ada. The name Ada was chosen after Countess
Ada King who is widely known as one of the first computer programmers.

After the Department of Defense began to implement Ada they continued
to produce further proposals for what the language needed. They followed
the naming scheme of Woodman, Tinman, Ironman, Sandman, Steelman
proposals and these continued to be updated and revised upon.

As Ada was refined and started to become used in every aspect of the
military, it began to be requested as a requirement for any future military
projects.

Initially, from its inception in 1975, Ada was focused on both embedded
and real-time systems but as it evolved in the 90s it was further expanded
upon to include support for object oriented programming still with the
focus on reliability and safety. One of Ada’s key features is that it improves
code safety and maintainability using the compiler to find syntax and
logical errors in favour of runtime errors. This is where this project will
come in, as it would be a good idea to be able to check both to further
improve the safety and reliability of the code.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 11

Figure 2 Sample of Ada code

There are a number of dialects of Ada available; the two most prominent
are SPARK [4] and Ravenscar [5]. SPARK is a subset of Ada with a focus on
formal verification and static analysis. It does this through the use of
contracts; these are behavioral properties that the developer must
implement correctly and can then be checked against the verification
toolset. SPARK Ada has a focus of eliminating runtime errors through a tool
called GNATprove [27], which generates verification conditions (VC) that are
used to assert that certain properties hold for the given program. This
check is only proven theoretically though and the application of test data to
cover all the branches of the code would still be very useful. It could then
be tested again in a concrete manner if any runtime errors occurred with
the application of the test data also. With these VCs it can determine if
runtime errors, division by zero, array index out of bounds, numerical
overflow or type range violation can occur within the program. As it keeps
to preset standards of safety and security as outlined in the formally
defined specification (contract), SPARK is used in the avionics field where
safety and stability are key.

The GNATprove tools runtime checks come at a cost too, in that it
increases the program size through additions of pre and post conditions to

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 12

every procedure and function that needs to be formally verified and also in
terms of the execution time of the program. The goal of this is to provide
statistical proof to demonstrate that none of these errors can occur during
runtime.

Ravenscar [41] is another subset of Ada again focused on safety critical
and real time computing. Ravenscar focuses on scheduling theory, such as
the ability to assign characteristics to tasks within the program, defined in
terms of deadlines. Deadlines are time constraints the given task has to be
completed within.

● Hard: must complete on time, failure may result in failure at system
level.

● Firm: must meet deadline under “average” or “normal” conditions.
Completing a task after a deadline has no value and missing a
deadline may cause system level degradation of service.

● Soft: must meet the deadline under “average” or “normal” conditions.
But there is still value in completing the task even after the deadline
has passed.

● Non-critical: A task with no strict deadline

The focus on scheduling in Ravenscar is to prevent Deadlock, Livelock,
Missed deadlines or Blocking of tasks. It achieves this with a restricted
scheduling model designed to limit the upper bound on blocking time,
prevent deadlocks and to ensure that there is enough processing power to
allow all critical tasks to complete within their deadlines.

Ravenscar also implements static analysis as a verification of the code,
control flow to make sure there is no semantically unreachable code, data
flow that ensures there are no variables with undefined values within the
code, symbolic execution for code verification without the need for a formal
specification and formal code verification which has a focus on runtime
error checking. It does this through the use of preconditions, which need to

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 13

be met for an operation to precede and postconditions that hold following
the successful call of an operation.

As software becomes more prevalent in every aspect of our lives, the safety
of the code behind that software has begun to come under more scrutiny.
From the disastrous Boeing 737 Max [42], to the Irish leaving Certificate
software bug [43] in 2020 that affected the grades of thousands of
students, it has become abundantly clear that errors in code can have real
world impact upon the lives of people. This has led Nvidia, a leader in the
world of machine learning and artificial intelligence to have implemented
SPARK, the Ada subset in its hardware firmware, specifically related to
self-driving cars [44]. Nvidia sees this as a way to increase the safety of
their code by helping verify that the code is free from bugs and
vulnerabilities. Through a study [45] conducted by AdaCore they
determined that by working with SPARK a cost and time saving of close to
40 percent could be achieved.

1.4 Parsers

In the context of this project the parsing I will be discussing is the parsing
of computer languages. There are many different parsing tools available
such as the Lex [6] and Yacc [7] tools. Parsing is a term used to describe
the analysis of code that conforms to a certain syntactic structure. The
parser will break the code down into its most basic parts or tokens. It will
then form those tokens into a tree structure with each branch being the
syntactic relationship to each of the tokens.

To go into greater depth the lexical analysis stage takes code in as a string
and removes any user comments and white spacing and reads the rest of
the values assigning them as tokens. Common token names are identifier
(variables names), keywords (e.g if, while, return, etc), separators
(parenthesis, curly braces, semicolon), operators (+ , = , <, *), literals (True,
“string”).

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 14

1.4.1 Steps of language processing

A tool such as Lex [6] will follow many steps to perform its task and this
project will explore them here. Code will be supplied to the program as seen
in figure 3. This is called the scanning stage or lexical analysis, here it has
broken down the code into tokens.

Figure 3 Simple code snippet

The code from fig 4 would be the outcome of lexical analysis, having
separated the code supplied into its tokens.

Figure 4 Example of lexical analysis tokenization

After the lexical analysis has broken the code down into its tokens then that
is passed to the parser (syntax analysis), such as Yacc (yet another
compiler compiler) [7] where it forms a parse tree from the tokens.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 15

Figure 5 Example of a parse tree [29]

The tree above shows how the parser makes sense of the tokens passed to
it by the lexical analyzer, here it being an assignment statement: an
assignment expression “:=” followed by a semicolon “;”. It can then be seen
as the more complex form of assignment expression of an IDENTIFIER
followed by an assignment expression “:=” followed by an expression.

That expression is then broken down into its expressions with extra steps
to enforce the order of operations. What is left is a tree where its leaves are
the tokens of the program feed to it by the lexical analyzer when read from
left to right and ignoring the lambda expressions which are empty strings in
effect it is left with:

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 16

IDENTIFIER ASSIGN_OP IDENTIFIER PLUS_OP LITERAL SEMICOLON

Through the rules applied to the parser it is possible to enforce variations
of the standard rules applied and would allow for the insertion of
annotations into the source code to allow for greater freedom to
programmatically alter the source code to input the test data and also
perform checks to see if the execution of the code would end up causing a
division by zero for example

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 17

2. Motivation
The motivation for this project came from the feeling that there has been
so much effort in general to improve the semantic and syntax errors in
code, but nearly no tools help look for runtime errors.

Runtime errors are particularly problematic in critical systems such as
avionics and rocketry, as well as any other system where human lives or
other extremely valuable assets depend on the smooth operation of the
system. These systems need to be tested for all outcomes and errors and if
there was a tool that could do these things it would be of great benefit to
developers as a whole.

One example of runtime errors causing great destruction is the Patriot
missile failure of february 25 1991 [15]. Patriot missiles are used as missile
counters aimed and exploding with oncoming missiles before they reach
their destination. The patriot missiles tracked time by multiplying the
system's internal clock by 1/10 to get the time in seconds. This calculation
was done using a 24bit fixed register and 1/10 produces a non terminating
binary value, so to fit into the register it had to be chopped short
introducing a time error when multiplied with the larger time value. The
patriot missile command was operational for 100 hours and this error over
the course of that time altered the system's time by 0.34 seconds. Due to
the travel speed of the oncoming missile being 1.676 meters per second,
this caused the interception to miss by approximately 500 meters and cost
the lives of 28 soldiers.

Another example is the explosion of the Ariane 5, June 4th 1996 [16]. The
Ariane 5 was an unmanned rocket built by the European Space Agency. The
total development cost of the project was $7 billion, but unfortunately it
exploded shortly after launch when a 64bit floating point number used to
track the horizontal velocity of the rocket was converted into a 16 bit
signed integer. The number was larger than the largest storable 16 bit
signed integer of 32,768 and caused the program to fail and the rocket to

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 18

explode. The cost of the rocket and its consignment was estimated to be
$500 million.

These two examples of runtime errors causing both the loss of lives and
the loss of property are the driving force behind this project and hopefully
the project can make the software engineering process capable of finding
these errors before they are deployed.

Below is an example program showing a runtime error.

Figure 6 example Ada .ads file

Figure 7 main file used to execute the example program

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 19

Figure 8 Example Ada program that will produce a division by 0 error

The code from the program in figure 8 can be delved into deeper by
performing symbolic execution on it. The variables are given a symbolic
value and the conditional statements that are met along the flow of the
program along with the symbolic values then form a boolean expression
that can be evaluated to see if there exists a value for the variables that is
valid. Below in figure 9 is an example of the symbolic execution.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 20

Figure 9 Symbolic execution performed on the example program

Figure 10 output of the program in fig. 8

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 21

Figure 11 Test data generated by the Mika tool to provide full coverage through the fig. 8 program

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 22

Figure 12 Mika tools log output, including the division by 0 error

Mika is an automated test input generation software that was built
originally to provide branch, Decision and Modified Condition/Decision
Coverage (MC/DC) and was not originally designed to handle the finding of
Runtime errors in code. When it does encounter these errors at the moment
it just returns what happened. One of the goals of the project will be to
implement exception handling within the mika_ada_generator (test input
generator) to better handle these errors now that they are being explicitly
targeted. In figures 6-12 above it is shown how a small program with the
potential for a division by zero works at runtime and after passing it
through the Mika tool to auto generate test data to achieve 100% branch
coverage also. The division by zero error is not handled and the goal of this
project is to allow the Mika tool to output information to the user to show
them exactly where in the code the error occurred and with what test data
brought the program to this state.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 23

3.Market Analysis
The cost of testing in software development is already very substantial with
the estimated costs of testing Minor or Negligible software being between
20%-40% of sales [17] of a piece of software. Software Criticality can be
broken down into:

Severity Dependability
Consequence

Safety Consequence

Catastrophic Failures propagate Loss of life or Huge
loss of assets

Critical Loss of project Causing injury or
moderate loss of

assets

Major Major setback to the
project(time and

money)

Minor or Negligible Minor setback to
project

But when a software failure could lead to millions in lost assets or even
loss of human life the cost associated with testing that software increases
even more so as having functional but safe and robust code is the most
important factor to the success of that program.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 24

Taking the example of the Ariane 5 [16], the total cost of the project was $7
billion and the lost assets were $500 million. If a tool were available to test
for the runtime error that caused this integer overflow it would have been of
great value. The Ariane 5 actually used the Ada language and when trying
to program the storage of a 64 bit floating point number being stored as a
16-bit integer, the Ada compiler did actually raise warnings, but these
warnings were turned off because the programmers thought that it could
never overflow [48], if the tool creating here could provide test input that
would cause a number overflow the programmers would not turn off the
warnings and proceed.

So the project proposes that by targeting Ada and already widely used
language for critical software development as the target platform for the
runtime error generator, there would be a substantial interest in such a tool
if we are successful in the development of such. Since the potential cost of
such a tool versus the immense cost of a failure such as this again makes
sense.

Some of the potential customers for our service would be [49]

● Airbus
● Boeing
● Lockheed-Martin
● Saab
● TGV (French high speed rail)
● New York Subway
● Paris Metro
● Commercial rockets: Ariane, Atlas & Delta
● European Space Agency
● Reuters
● Multiple European Financial institutions (specific names unavailable)
● Hinkley Nuclear Power Station, England
● American, Australian, Canadian, English, Swedish Militaries
● NATO

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 25

4. Similar Tools
There already exist some tools that achieve a similar output to what this
project intends to do. These include:

● Reactis for C

Reactis [11] is an automated test generation tool. It has three main
components: the Tester, Simulator and the Validator.

The tester will generate test cases for the supplied program
automatically and through applying these to the code has the ability
to find runtime errors. The test data is generated with coverage in
mind with the aim to get the most coverage of the code from the
supplied test data.

The simulator provides a GUI (graphical user interface) that supports
debugging of the code in an interactive fashion with displays of the
test coverage provided.

The validator allows the programmer to formalize assertions and
coverage targets. It will then simulate the program trying to break the
assertions or targets. If a runtime error or assertion fails it will return
the test data that produced the failure allowing the programmer to
follow the exact sequence of steps taken to reproduce such.

Reactis for C is a product of Reactive Systems, inc. and the exact
technology used to produce this software is not readily available.

● Backstop for Java

Backstop [14] is a project for Java code that aims to simplify the error
messages produced when a program encounters a runtime error. The
goal of this is to make novice programmers more comfortable with
how they handle these errors when they appear without a confusing
stack trace message. The stack trace is converted to a more human

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 26

readable format and this is displayed to the user. This could be a
great educational tool in bridging the gap for new users to understand
more complex error messages but in relation to this project it will
have little relevance.

● Ada SPARK using GNATprove

Spark [8] is a language based on Ada and it could be seen to be a
tighter subset of Ada that focuses upon writing code for high integrity
applications, such as avionics or financial systems. Spark
encourages programmers to write code that is sound from the start
just by the nature of the techniques used in the construction of the
application.

Spark uses annotations in the form of Ada comments. Since they are
in comment form they are ignored by the Ada compiler so Spark code
can be compiled into an executable using the Ada compiler. The
annotations come in two types, Flow analysis and formal proofs. The
proof annotations allow the assignment of preconditions and
postconditions of subprograms, assertion of loop constants and the
declaration of proof functions. These conditions allow Spark to
generate Verification Conditions that can be verified by proof
checking tools such as the SPADE Automatic Simplifier [9]. The flow
analysis annotations allow for checking that modes of parameters
and global variables match the detailed interdependencies provided
in the annotations by the Examiner[10].

GNATprove is an additional tool available for Spark that interprets the
Spark annotations as they are interpreted at run time during tests.
This allows the executables semantics to have the verification of run
time checks, similar to the formal proofs in Spark itself and which can
be verified statically by GNATprove.

As seen in figure 4 below, GNATprove found the possibility of 5
runtime errors in the given code under certain conditions. With this

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 27

knowledge the programmer could then take steps to prevent these
errors from occurring without the need for exception handling.

Figure 13 Example code GNATProve

https://learn.adacore.com/courses/intro-to-spark/chapters/03_Proof
_Of_Program_Integrity.htm

Figure 14 output from GNATprove run on fig 13

In the above example from fig 5 and 6 GNATprove can be seen
finding first the potential of an integer overflow error if J was equal to
the lowest possible integer and I was equal to -1. Instead of
producing an even lower negative number it would wrap around and
return the highest integer value.

https://learn.adacore.com/courses/intro-to-spark/chapters/03_Proof_Of_Program_Integrity.html
https://learn.adacore.com/courses/intro-to-spark/chapters/03_Proof_Of_Program_Integrity.html

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 28

The next error it finds potential for is an array index check. If the first
index in the array was 1 and I and J were both zero, it would be trying
to access memory not assigned to array A.

The third potential error found is a divide by zero error, stating that if
Q is assigned 0 then the division would cause a runtime error.

The fourth and fifth potential errors are both related to the division by
zero error, stating that the result may be an overflow or out of range
error, but since division by zero is undefined it's hard to say for sure.

This output is very useful and informative, but the hope for this Ada
runtime error generator is to provide, not potential errors, but given
sample test data generated by the Mika tool it will provide a result to
say if any of the test data would result in a concrete runtime error.
This is much more presusave than just a warning that says that
something is possible, providing test input that the developers can
run the program with and produce this error will be very convincing
that it is indeed possible and can happen once the software is
released if the necessary steps are not taken to safeguard against it.

This Idea of concrete information being provided back to the
developer is key to this project, not only will the presence of an error
be found, but reproducible steps are given to them also. With this
information in hand it will make the eventual prevention of the error
from occurring.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 29

5. Relevant Technologies and Algorithms

5.1 Software Fault Tree Analysis (SFTA)

A fault tree is a technique used in engineering to assess the risks and
reliability of a project. It is a logical diagram that displays the relationships
between events using AND and OR gates to establish under what
circumstances a fault can occur. A software fault tree [13] analysis is a
procedure that is applied to critical subsystems of some software to
determine the paths and conditions that could be followed to reproduce a
certain error or system failure. Applied to the system critical sections of
software from an early stage in development the SFTA is a good way of
detecting potential errors in the code before it becomes too complex during
development. It is a useful step in determining how errors can come about
in the flow of the program and a good first step in finding a way to eliminate
those errors. Although very interesting, this technique would not be too
beneficial to the project as it focuses more on the process rather than the
code.

5.2 Constraint Satisfaction Problem (CSP)

The constraint satisfaction [12] problem has a set of variables {A} within
the section of the code under review and a set of values for those variables
{B} and a set of constraints {C} placed on some or all the variables that
restrict the values that these variables can take. With these values set up it
is the goal to determine if there is an assignment of a value to each variable
{A} from {B} that meets the constraints in {C}. If this is the case then the
problem is said to be satisfiable. But if the problem comes out to be
unsatisfiable then the next step is to find if there is at least an optimal
solution where as many variables can be assigned values within the
constraints as possible.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 30

Most CSP algorithms use search algorithms to look for all the possible
assignments for the variables and given enough time these will always
determine if the problem is satisfiable or not. There are a number of search
algorithms to choose from for doing the searching and the examples used
in [12] are a simple backtracking algorithm, forward checking and thirdly a
MAC (maintaining arc consistency).

For example if one were to run the tool on a small piece of code that had
variables {X, Y ,Z} where Z is going to be used as a divisor This would be
our set {A}, {B} would be {.. , -2, -1 ,0 , 1, 2 , ..} and then {C} would just have
one constraint {Z != 0}. This would be our constraint satisfaction problem
for the division by zero within that code.

While this is very interesting, it will not be used in this current project as a
custom solver is already in place, but expanding knowledge into other
approaches is useful in fully understanding the problem at hand.

5.3 Symbolic Execution

Symbolic execution is a program analysis technique whereby the values of
variables are changed to a symbolic value. As these values are stored as a
program's flow happens and any conditional statements that it encounters,
a boolean expression can be built up that can then be used to evaluate to
find a value for a variable to meet all the requirements to allow the program
to progress down the different paths.

An example being:

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 31

Figure 15. Sample code, (Baldoni et al., 2018)[18]

Figure 16. Symbolic execution tree, (Baldoni et al., 2018)[18]

There are many very interesting developments in symbolic execution and it
has become rather popular in recent times with the evolution of Boolean
satisfiability problem solvers. It is discussed at length in a number of

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 32

videos online, such as this Microsoft talk [19] and many educational
resources are available on it too such as the Coursera online lecture [20]
and MIT Open Lecture [21].

5.4 Prolog

Prolog [26] is a functional programming language that specializes in natural
language, computational language and also artificial intelligence. Prolog is
very specialised in handling predicate logic problems. It will take a number
of facts or rules and compute the relations of those facts. The draw of
prolog here is that it can take the output of the symbolic execution and
make a prolog program from it and this will allow us to follow down the
different paths of the code. If prolog ever comes to an unsatisfiable
statement it has backtracking built in, where it will go back up to the
previous statement and try a different path

5.5 SAT solver (Boolean satisfiability problem)

In logic and computer science, the SAT [25] or propositional satisfaction
problem is the problem of deciding whether an interpretation exists that
satisfies a given Boolean formula.

SAT asks if it is possible to reliably substitute the variables of a given
Boolean formula with TRUE or FALSE values in such a way that the formula
is evaluated as TRUE. If that is the case, then the formula is satisfiable. In
contrast, if there is no such assignment, the function represented by the
formula for all the possible variable assignments is false and the formula is
said to be unsatisfiable.

These solvers are binaries that accept input in the form of a CNF formula
text file and write to the console the corresponding output.

A SAT solver is a method that takes a CNF(conjunctive normal form) [24]
which can be seen as a set of clauses and each clause as a set of literals,
as input and outputs either a Boolean satisfactory assignment to the

https://www.youtube.com/watch?v=pkm3ItOLfRs&ab_channel=MicrosoftResearch
https://www.coursera.org/lecture/software-security/basic-symbolic-execution-U9R38
https://www.youtube.com/watch?v=yRVZPvHYHzw&ab_channel=MITOpenCourseWare

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 33

variables used in the CNF formula if the formula is consistent or if it is not,
UNSAT.

The success of Boolean Satisfaction (SAT) solvers has seen massive
improvement in the past few years. [24]

Aside from the worst-case exponential run time of all known algorithms, in
areas as diverse as software and hardware verification, automated test
pattern generation, planning, scheduling, and even challenging algebra
issues, satisfaction solvers are progressively leaving their mark as a
general purpose tool.

There exist two ways to pass a formula to an SAT solver. The first one is by
using a semi-standard file format known as DIMACS, and the second by
using the SAT solver as a library.

Developers prefer to use SAT solver as a library, but the DIMACS format
allows prototyping the applications faster, and quickly tests the
performance of different solvers on the application’s problem.

DIMACS has a line oriented format that consists of a comment line which
starts with “c”, a summary line starting with “p” that contains information
about the type and size of the problem in the file and a clause line which
comprises space-separated numbers ending with 0. Each non-zero number
for this line indicates a literal, with the negative numbers being negative
literals of that variable, and 0 being the end of a line [22]. The figure below
shows a CNF converted into DIMACS.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 34

Figure 17 - DIMACS Format, Source: SpringerLink [Online]

https://link.springer.com/article/10.1007/s12652-020-02247-w

Modern SAT solvers can be categorized in two groups: Local Search based
solvers and Conflict Driven Clause Learning (CDCL) based solvers.

Local Search solvers try to find a satisfactory assignment for the input
Boolean CNF formula by changing randomly, the initial assignment using
bit flips until a satisfying assignment is reached.

A standard SAT Local Search based algorithm consists of an initialization
phase and a local search phase. In the first phase, all variables are
assigned true values. The truth value of a single, heuristically chosen
variable is modified at each stage of the local search phase. Exceptions are
solvers based on evolutionary algorithms, which preserve solutions and use
recombination techniques. The search process is terminated when a
suitable assignment is found or when a bound on the runtime is met or
exceeded. Almost all SAT Local Search algorithms are incomplete and they
cannot determine the satisfiability of the formula. [23]

The CDCL solvers are the evolution of the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm, which is a relatively
simple improvement of the naïve backtracking algorithm. CDCL is complete

https://link.springer.com/article/10.1007/s12652-020-02247-w

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 35

because it replies to SAT that a solution exists and it is sound as it
communicates to SAT an unsatisfiable formula.

To explain how CDLC works, the naïve backtracking and the DPLL
algorithms will be explained as follows.

The naïve backtracking algorithm starts its work with picking a variable
without an assigned truth value and if there are none, return SAT. Then a
truth value will be assigned. Ultimately it is checked if all clauses in the
formula are still potentially satisfiable. If they are, it will start from picking
an unassigned variable, and if they aren’t satisfiable another truth value is
picked for the variable. If they are not satisfiable and both truth values have
been used, backtrack. If there is nowhere to backtrack then return UNSAT.

DPPL algorithm introduces two new concepts, positive literal and negative
literal. A literal is positive if it evaluates to true when its variables are
assigned truth values and they are negative otherwise.

This algorithm aims to speed up the check for unsatisfiable clauses by
updating the state of the clauses based on variable assignment. This
means that after a truth value is assigned, all clauses that contain a literal
of the variables selected at the beginning, are going to be updated
accordingly. If they contain a positive literal, it means that they are satisfied,
and they can be removed completely from further analysis. If they contain a
negative literal, they cannot be satisfied using that variable and the literal
can be removed from them.

The idea behind the CDCL algorithm is that a conflict, when an empty
clause is created, is caused by a variable assignment that happened sooner
than it was detected. If this problem can be identified when the conflict was
caused it will be possible to backtrack several steps at once, without
running into the same conflict multiple times.

The CDCL implementation analyzes the present conflict, finds the earliest
variable assignment involved in the conflict and jumps back to the

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 36

assignment. The conflict clause is added to the problem, to avoid revisiting
the search space that is involved in the conflict [23].

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 37

6.The Learning Curve

6.1 Overview of the Process

The process of developing test inputs for the supplied source code at a
basic level requires the mika_ada_parser and the mika_ada_generator.

The mika_ada_parser is compiled from ada.l (Flex file) and ada.y (Bison
file). The Flex file contains the information related to the lexemes and their
patterns and what token they form. The Bison file contains the context free
grammar and how these supplied tokens from the lexical analysis are
formed and also generates the prolog term file (foo.pl) of the source code.

Mika_Ada_Parser.exe:

● Lexical Analysis:
○ Ada.l
○ Tokens
○ Lexemes
○ Patterns
○ Symbol Table or node information in abstract syntax tree

(Lexeme, Token, Type, Address, etc...)
● Syntax Analysis (Parser)

○ Ada.y (custom context free grammar used for mika)
○ Parse Tree (leaf nodes of tree are the source code)
○ Syntax Errors
○ Semantic Analysis

Mika_ada_generator:

● Generated Prolog code (foo.pl)
○ Symbolic Execution
○ Inherent backtracking

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 38

Figure 18 Chart of the Mika parsing steps

The Ada source code is passed into the Mika_ada_parser which is
compiled from the ada.l and ada.y files, the lexical analysis (flex) and
syntax analysis (bison). Additions for the exceptions switch have been
placed in the ada.y file to add queries to the foo.pl file when exception
conditions are met, e.g a division symbol for division by zero or an indexed
element for the array index out of bounds check.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 39

Figure 19 Steps taken to generate test input

The foo.pl file is the prolog terms version of the Ada source code unter test.
This contains all typing information, package specifications and the source
code and mika referencing for the common tokens and the specific tokens
such as variables, procedures, functions and custom types used in the
source code as prolog facts.

At the end of the file contains the queries that will be run to perform the
symbolic execution on the variables in question and see if a condition
exists where it evaluates to be true, if true test inputs are found that meet
the supplied requirement.

6.2 Compilation

The first part of the process of understanding how to accomplish the task
set out by the project was to compile the Ada parser used by the Mika tool.

There are two Flex files, ourxref.l and ada.l and two bison files ourxref.y and
ada.y. The ourxref files need to be run through Flex and Bison respectively
to produce output files used for compilation, these are lex.yy.c produced
from ourxref.l and ourxref.tab.c and ourxref.tab.h produced from the
ourxref.y file.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 40

Once these output files have been produced they need to be added to a
blank Visual Studio 2019 project. This is where some difficulties were
encountered, see figure 15 below.

Figure 20 - Project with output files in VS2019

Upon executing this step of the project, errors were met as shown in figure
16. A double check was done to make sure that the required folders were
linked to the project’s C/C++ include directories and the correct folders
were indeed present as shown in figure 17.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 41

Figure 21 - Error received trying to execute the project

Figure 22 - Linking the project to required files from mika

After a prolonged period of trial and error, the correct way of obtaining the
needed executable files from the compilation of the project was
determined. As is depicted in figure 18, right clicking on the solution and
selecting build compiles the output files and generates the necessary files
(figure 19). With this knowledge in hand, the next step was to compile the
ada.l and ada.y files in the same manner.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 42

Figure 23 - the correct way to obtain executable file

Figure 24 - The output from compilation, with debug specified

The compilation of the Ada parser went somewhat smoother than the initial
step, but there were some hitches encountered here too. Upon selecting the
build option the linker stated that it was missing files related to the queue.
These files were included in the C/C++ include directory as they were for
the ourxref compilation. The solution that was achieved was just to place
the files that it wanted directly into the project solution and then the
compilation successfully completed.

6.3 Parsing

Now with the parser built it was time to run it on some test code. The
parser was run on the example code from figure 8 and a supplied example
code from Mika relating to dates.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 43

To begin parsing from the command line the following command is
entered: mika_ada_parser -M”C:\Mika\bin” -f”C:\GNAT\2010\bin” -gnat05 -d
“file to parse”. The parser executable was copied into the folder where the
target code was present and the above command line entry was tried.
Environmental variables had been set for both the Mika\bin and the
GNAT\2010\bin but unfortunately there was no bin folder in the Mika
project and no way to compile it yet to produce one. A GUI version of Mika
had been downloaded to provide examples for how it worked earlier so the
\bin folder in that version was referenced instead and the parsing
completed.

Initially with a very limited understanding of how the parser actually worked,
a study of a section of the bison file and how it was parsed in relation to the
two sample pieces of code was undertaken. The section in question being
the IF statement and how a parser sees that.

Figure 25 - IF statement from the ada.y grammar definitions

In figure 20 using bison the rules of how an if statement in Ada is formed is
given, the definition on line 2679, if_statement : IF cond_clause_list else_opt
END IF ';'. Here it is given a rule that an if statement (if_statement) consists
of an if (IF), followed by a list of conditional clauses (cond_clause_list).
This can be a list of just one conditional clause or many, followed by an
optional else statement (else_opt). This does not need to be present to

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 44

make a valid if statement, but it is looked for all the same, followed by an
end if statement (END IF) and lastly a semicolon (';').

Underneath this definition is how the parser will build up the if statement
from the tokenization of the source code. The next line on 2680, {$$ =
malloc((SAFETY+strlen($2)+strlen($3)+14)); has a few interesting
qualities, firstly the ‘$$’ is the ‘if_statement’ from the above line and this line
of code is an assignment statement, firstly allocating memory for the
variable using malloc [30] which is a C language function which allocates
memory of a given size and returns a pointer to it. As seen in figure 21
‘SAFETY’ was defined as 5 within the program, so 5 is added to the length
of the second token ($2) and added to the third token ($3), plus 14. Once
the memory has been allocated to $$ (if_statement) the code precedes to
copy in a string and concatenate further strings to it.

Figure 26 - The definition of safety to being the integer 5

Starting with the string “if_stmt([“, followed by concatenating the string
value of the second token ($2) which was the list of conditional clauses
(cond_clause_list), followed by another string “], ”, followed by the third
token ($3) which was the optional else (else_opt) and finally another string
“)”. This leads to the building up of the string seen below in figure 22,
consisting of lines 164 to 168.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 45

Figure 27 - How the parser was used to build up a prolog term in example.pl

There is a lot more happening to make up the list of conditional clauses
and that is what shall next be looked into.

6.4 Parsing additions

Having tackled the division by zero check in the parser, the next step was to
move on to other types of runtime errors. The first that came to mind was
an index out of bounds error, for example trying to access the sixth element
in an array of length five.

In Ada a CONSTRAINT_ERROR [31] is raised whenever an attempt is made
to violate a range constraint. This is an exception type within Ada itself and
is used for other errors as well, such as overflows, null dereferences and
the previously tackled division by zero.

Let us have a look at some of these errors in practice:

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 46

Figure 28 - constraint.adb example used to display constraint errors

Figure 29 - output from the compilation and execution of constraint above

In figure 23 above we see the creation of a custom integer type that has a
range from 0 to 5. Next the variable X, which is of the Custom_INT type, is
attempted to be assigned a value of 6. We can see that the compiler
helpfully told us that a constraint error would be raised at run time and we
can see from the code that it indeed halted execution of the code as the
print out of the string to the console was never reached. This is the most
basic example and we will delve deeper into this.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 47

Figure 30 - Ada code with custom type and custom range

Figure 31 - Output showing the constraint error of exceeding range of type

From the next example we can see that the compiler is still smart enough
to see that a constraint error will be raised even though X is initialized
within the range specified it is added to during execution and raises the
error. What if the assignment addition happened in a different branch?

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 48

Figure 32 - Expanding the complexity while testing ranges

Figure 33 - Compiler still finds the error even when inside an else branch

As can be seen in the above code the compiler warning about constraint
errors was not present during compilation this time, yet the error was still
raised at runtime. This shows how a reliance solely on the compiler to help
catch these errors is unwise as a simple obfuscation of the decision paths
caused the compiler to not see ahead to this potential error.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 49

Figure 34 - Ada code to showcase the ‘First & ‘Last of types

Figure 35 - Output from fig 34

In the above example we can see that any specified type range is
accessible through the use of the TYPE‘First and TYPE‘Last [32]. This can
be used for other structures too such as arrays and since array out of
bounds is another type of runtime error that is of interest.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 50

Figure 36 - A further exploration of the range of a type

Figure 37 - Output from fig 36

In the above example it is shown how given an array the range of its bounds
is accessible through the use of the ‘First and ‘Last also and an attempt to
access an index outside of that range produces a constraint error at
runtime. This will be useful in checking if a runtime error would be possible
whenever an array index is being accessed.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 51

Figure 38 - A sample Ada program with an array used within it

Using an example procedure from above we assign into the created array1.
After running this file through the Mika_ada_parser we can see how it
breaks this down.

Figure 39 - How the array is represented within the generated constraint.pl file

We can see above that it sees it as an

indexed(Array1_368, [R_372])

What needs to be inserted will be something akin to:

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 52

indexed(Array1_368, [rune(1, R_372 > Array1_368’Last ||
R_372 < Array1’First, R_372)])

Next step is to find the parsing rule in ada.y where the changes need to be
made.

Figure 40 - Additions in the ada.y file for when an indexed_component is encountered

The first implementation was unsuccessful as everything between the
apostrophes from ‘Last to ‘First was interpreted as a string by prolog so
another approach had to be taken and there was already a solution in the
parser that had not been encountered by the author. TIC(object,
(range || first || last)) can be used to get the values associated
with array’first or array’last without the use of the apostrophe that got
confused for a string below.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 53

Figure 41 - constraint.pl after the additions to the ada.y file had been implemented initially

After the needed changes were made in the parser the resulting output to
the prolog file looked more syntactically correct.

Figure 42 - constraint.pl after using the tic() function instead of the character ‘

There were more difficulties to overcome and these will be covered in
section 7 in more detail.

The next step would be to implement the next runtime check on number
overflows. Ada has a very good check for these already, but as the code
branches off into different decisions the compiler tends to not pick up every
possibility. Using another simple program shown below the possibilities of
this error will be explored.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 54

Figure 43 - Sample Ada code used to test number overflows

Here there is a procedure called numberOverflow, inside there is a custom
integer type called Custom_Int made with a range from 0 to 50 and three
Custom_Int variables X, Y and T. Initially the value of T is output to the
console.

Figure 44 - Output from fig 43

Next let us try to go outside of the range of this type by subtracting T from
X.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 55

Figure 44 - change in the code to exceed the range of Custom_Int X(4) -T(42) = -38 outside the range of
Custom_Int

As was expected the compiler caught this constraint error during
compilation and raised a warning and upon execution the constraint_error
was raised.

Figure 45 - Compiler warning and error on the execution of the code from fig 44

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 56

7. Limitations of implementation
Having started out with some success implementing the runtime error
check for division by zero in the Ada parser, it seemed like it would be
straightforward to then move on to other runtime errors and insert checks
for them also inside the parser. After setting about to do just that there
were a number of areas of concern that came to light, initially taking an
array out of bounds as an example. The idea being that whenever an array
index was referenced that there would be a check to make sure it was
within the range of array’First and array’Last [32] (Ada implementation to
return the lower and upper bounds of an object with a range).

The type of the array was available to be used within Mika and that was
something of great use, as without that, it would have been impossible to
get the range values returned. But pressing forward another problem was
raised. When referencing an array index the syntax Array (i) is used, this
is very similar structurally to how one would call a function or procedure,
e.g

Function Square (A: Integer) return Integer is

Begin

Return A * A;

End Add;

This function would be called “ Square (2) “ which is structurally
identical to the array index reference. That is not the end of the similarities
though, type conversions or sometimes known as casting also takes the
same format, and an example of numeric type conversion would be
Integer(1.6) [33] would return the integer 2.

The parser when it encounters any of these behaves in the same way in
breaking the code up into tokens under the indexed_component [34]. Now if

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 57

the original approach was taken to take the value from inside the
parentheses and test it against the range of what preceded it would work
fine for an array, but not so much for a function, as it does not have a range
and calling Square’First would throw its own exception. Using an example
program called constraint as a testing environment, shown below.

Figure 46 - Compiler warning and error on the execution of the code from fig 44

There is only one reference to an indexed element on line 16 where Array1
(R) := T; yet when run through the mika_ada_parser having made the
following changes to the ada parser:

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 58

Figure 47 - Ada.y additions for indexed_component, including the tic() in place of the character ‘

The output in the prolog file constraint.pl is as such:

Figure 48 - Source code reconstructed in the constraint.pl file

Everything seems to have translated well into the prolog file here until the
first parameter in the rune() call is examined. This is a counter used to track
how many times rune has been called for backtracking purposes and as
there is only one indexed component here the assumption would be that it
would have a value of 1 here too. Upon deeper investigations into the
prolog file to see what happened it is found that within the package
specification, in GNAT or MIKA is an assignment of a subtype indication of
characters as Ascii characters. These are stored as enumerators and
referenced at the start of the compilation and this has inadvertently called
the rune() for each of these character subtype indications.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 59

Figure 49 - an unexpected outcome within constraint.pl, rune was being called inside the
package_specifications

This should not cause an error as it should still fall within valid ranges of
the character array, but it is an unnecessary extra 33 checks for prolog to
go through. And if there was some form of function call or procedure call
within the program then it would not work at all. The parser just can’t tell
the difference between these similar looking entities and as such it would
make it very difficult to use going forward in real code where the use of
functions and procedures is everywhere. If the step were taken to insert
these checks for runtime exceptions within the symbolic execution stage
instead,it would have more flexibility in determining what type of object we
are working with at any given stage. Thus we could focus the index out of
range to specifically those objects that would be at risk of causing this.
This was an unforeseen problem at the inception of this project and
although there has been success in the implementation of the division by
zero and array out of bounds exception it would be a very inefficient way of
proceeding with the application to other exceptions as the ambiguity would
only increase with every exception added. The way to continue on from
here would be to have the checks conducted from with in the symbolic
executor as all the type information is available there, this would result in a
narrowing down of the element under inspection, for instance if an array
was being looked for, with in the symbolic executor they are know as an
array, whereas at the parsing stage they are the much more generic
“indexed element” which covers far too many elements.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 60

8. Mika Extension for Text Editor
With the project branching out into the implementation of an extension to
allow developers to dynamically query their Ada code within a text editor.
The text editor that the extension would be written in had to be picked.
Below the pros and cons of some of the most popular text editors [50] will
be discussed and an eventual choice will be selected.

● Sublime Text

Sublime Text is a text editor for code and markup. There is a free tier
and a premium tier available. One of the major drawbacks of this text
editor besides the fact that there is a price involved, is the fact that it
is not an open source software. It does have a nice user interface
which is intuitive and easy to navigate.

Figure 50 - Example of Sublime Text GUI

For the purpose of creation of extensions (plugins), they are written in
python. Being in python comes with its benefits of being familiar and
popular. It also has access to all of Pythons packages which is
extensive. There are a number of excellent starter guides also for the

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 61

creation of these plugins, with the best found being at Envatotuts+
[51].

● Emacs

Figure 51 - Example of Emacs GUI

Extensions for Emacs are written in Lisp. Lisp is an old language that
was initially developed in 1958 by John McCarthy, it uses a fully
parenthesized prefix notation as shown below.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 62

Figure 52 - Example of Lisp code

Emacs is a complex Text editor that is highly customizable with many
different extensions. This is very useful, but this complexity comes at
the cost of the basic Emacs not being to everyone's tastes and only
achieving desired usability once all necessary extensions are
installed. This can also lead to an issue of using Emac on multiple
devices, the experience is not the same until all extensions are
installed again.

It is also a command line interface (CLI) centric text editor, favouring
keyboard shortcuts and command line commands to operate tasks.
Emacs does have a basic graphical user interface (GUI) but as the
stack overflow survey [50] suggests GUI heavy editors are increasing
their market share and increasing in popularity with Visual Studio
code accounting for over 50% of user preferences while Emac
managing 4.5% and another CLI based editor VIM making up 25.4%.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 63

Emacs is particularly geared towards Linux and with Mika being only
available on the Windows platforms this combined with some of the
other points mentioned above has ruled it out as a contender for the
editor to be selected for this extension.

● Atom text

Figure 53 - Example of Atom Text GUI

Atom text is an electron based editor. Electron is a framework for
development of GUI applications using web technologies such as
Chromium and Node.js.

Both Atom text and Electron were developed by GitHub and are open
source. Atom Text was released in 2014, Microsoft forked a version
of Atom Text as their base for Visual Studio Code which they released
in 2015, before Microsoft’s eventual purchase of GitHub in 2018 for
$7.5 Billion.

Extensions in Atom Text are written in JavaScript and have a healthy
extension building community, although its popularity has fallen off

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 64

due to being so similar to Visual Studio Code (VS code) and
Microsoft owning both seem to be favouring the development of VS
code.

● Notepad++

Figure 54 - Example of Notepad++ GUI

Notepad++ is a very popular text editor that has a reputation for being
able to open any file needed, but it’s extension experience is not very
mature or well supported [52]. Extension are written in C++, with Ada,
C#, ‘D’ and Dephi as other languages supported. The idea of writing
an Ada extension in Ada was quite enticing, unfortunately the
documentation on the Ada support was missing. Notepad++ is also
an open source project and it only runs on windows.

● Visual Studio Code

Visual Studio Code (VS code), owned by Microsoft and released in
2015 it rose in popularity rapidly gaining over 50% of the stack

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 65

overflow most popular development environments and tools vote in a
survey carried out on over 87,000 developers [50].

Figure 54 - Example of Visual Studio Code GUI

Extensions for VS code are developed in either Typescript or
JavaScript, with Typescript being a strict syntactical superset of
JavaScript and adds optional static typing to the language.

As with Atom Text which VS code was based upon it is both an open
source project and based upon the Electron framework. This has led
to a highly expanding Extension development with over 120
extensions already achieving over 1 million downloads each [53]. No
statistics for how many total extensions are available but new
extensions are being continuously released.

VS code is a cross platform application that runs on Windows, Apple,
Linux and Arm systems such as Arduino. This far reach is also a
reason for its popularity along with the fact that all extensions and
settings are sync able across devices using signing into a Microsoft
account, no other text editor offers this convenience.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 66

After consideration of the possible text editors in which to write the Mika
extension the final choice was Visual Studio Code, based primarily on its
popularity. With such a reach among developers it is likely that this would
also reach more Ada developers and Mika users than any other platform.

8.1 Visual Studio Code Extension For Mika

After the realization that the parser was not going to be the correct area to
do the runtime checks, another idea of doing an extension for Mika within
Visual Studio Code was presented. The idea being that the extension would
allow a developer to insert a special annotation into their code at a
preferred line, along the lines of “--#MIKA ” followed by variables from that
program. The parser would then take this annotation and apply the needed
check into the prolog code to make the test generation attempt to match
what was supplied. For example if the comment “--#MIKA Y == 4 and X ==
2” were inserted, the symbolic executor would then try to provide test cases
to make both these statements true by this line in the follow of execution if
there was a combination available to make it true. It should be noted that
any boolean expression works here such as records, enumerations, arrays
and other function calls not just integers and floats.

In order to write a Visual Studio Code extension you need to have node.js
installed and then either npm [35] (node package manager) or yarn [36] (Yet
Another Resource Negotiator) as your package manager. Yarn is a newer
package manager and seems to be more favoured amongst developers. It
is feature rich and made with ease of use in mind. However, the decision
was taken to go with npm for the project as it is a longer standing package
manager with more documentation enabling faster learning of how to use
it.

The language used to write the code for the extension is a choice between
typescript and javascript [54]. Typescript was developed by Microsoft with
the goal being to apply typing to scripting languages such as javascript,
hence the name. It is a superset of javascript and aims to make

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 67

applications written in this language more scalable than applications that
use javascript.

Javascript is a scripting language that has become one of the most widely
used programming languages. The author has had a small amount of
experience with javascript and the decision was made to apply this option
to this area of the project as it is more familiar, although typescript seems
like it might be the best option if the extension was to be of greater size.
With a project of greater size conforming to strongly types enforced by
typescript would be beneficial and it may be a choice for future
development if this continues to be worked upon. The application of static
types and classes, modules and interfaces helps to construct a much more
cohesive application. For this extension though as it has a relatively small
scope JavaScript comes out as being the correct choice.

Expanding upon this extension in future to make it more user friendly and
supply answers in a popup rather than a new tab could be investigated.
Visual Studio Code’s extension guidelines [55] do state that over usages of
notifications should not be overused. Although this is definitely an area
where improvements can be made in the future.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 68

9. Testing the Limitations of Mika
In order to put the new exception finding feature of Mika to the test a
number of tests will be carried out to determine if an otherwise reachable
exception is found by the test driver.

The first test was involving loops and a small program was written:

Figure 53 - A sample program that would produce a division by zero once B reached 0

The Integer B starts at 100 and decrements down over the course of the
loop, once it reaches 0 and an exception should be raised but when run
with the exception flag in Mika it runs out of memory before the exception
is reached.

Figure 54 - Output from Mika while running with the exception flag

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 69

10. Conclusion
In conclusion the Project of the Ada Runtime Error generator was very
enlightening. The fact that two of the runtime errors (division by zero and
array index out of bounds) have been implemented and produce correct
results when run through Mika is very promising. The fact that the area of
implementation within the Ada parser proved to be too ambiguous for the
full range of run time errors should not detract from the fact that it is a
possibility for future projects to tackle within the symbolic executor where
all types are readily available.

The application of such a program would be immensely beneficial both
from a software safety perspective but also financially for interested
companies. The cost of automatic software verification software is quite
high, AdaCore’s SparkPro has a number of different versions and has
pricing only on request, taking into account the size of the organisation. So
an investment of time and effort into being able to provide code validation
and verification as an open source project would have immense benefits.

The same technique could be applied to other languages also, not limiting
the scope to just Ada. This is doubly interesting as Ada is a niche language
already with a relatively small user base and has a similar tool already
available with SparkPro. Whereas if applied to another language such as C
or Python where there is a far greater user base and very limited tools
already available the benefits could be great.

The addition of the Visual Studio Code extension also provides an
interesting addition to the ways in which code can be queried, Being able to
dynamically query variables on a certain line of code is both very useful for
understanding the code under scrutiny but also will help with the
generation of further test inputs or to see if a certain condition can be met
or not without having to leave the Visual Studio Code environment. This
tool could also be expanded upon in future to work along with the
suggested expansion of the Runtime Error generator into other languages

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 70

making a more unified software package where the results you require are
as easily accessible as possible to the user.

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 71

11. Bibliography
[1] Booch, G, Bryan, D and Petersen, C. Software Engineering with Ada, 1994, 3rd
Edition Addison-Wesley, ISBN 0-8053-0608-0

[2] Whitaker, W.A., 1993. Ada—the project: the DoD high order language working
group. ACM SIGPLAN Notices, 28(3), pp.225.

[3] Kádár, I. (2017). The optimization of a symbolic execution engine for detecting
runtime errors. Acta Cybernetica, 23(2), 573-597. Available at:
https://doi.org/10.14232/actacyb.23.2.2017.9 [Accessed 11 November 2020].

[4] Barnes, J.G.P., 2003. High integrity software: the spark approach to safety and
security Pearson Education.

[5] Burns, A., 1999. The Ravenscar profile. ACM SIGAda Ada Letters, 19(4),
pp.49-52.

[6] Lesk, M, and Schmidt, E., Lex - A Lexical Analyzer Generator, Available at:
http://dinosaur.compilertools.net/lex/index.html [Online], Accessed on:
27/10/2020

[7] Johnson, S., Yacc: Yet Another Compiler-Compiler, Available at:
http://dinosaur.compilertools.net/yacc/index.html [Online], Accessed on:
27/10/2020

[8] Barnes, J. High Integrity Ada: The Spark approach, 1997, Addison-Wesley,
ISBN 0-201-17517-7

[9] Spark Team, 2011, User Manual [online] Available from:
https://docs.adacore.com/sparkdocs-docs/Simplifier_UM.htm [accessed
28/10/2020]

[10] Spark Team, 2011, Examiner User Manual [online] Available from:
https://docs.adacore.com/sparkdocs-docs/Examiner_UM.htm [accessed
28/10/2020]

https://doi.org/10.14232/actacyb.23.2.2017.9
http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/yacc/index.html
https://docs.adacore.com/sparkdocs-docs/Simplifier_UM.htm
https://docs.adacore.com/sparkdocs-docs/Examiner_UM.htm

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 72

[11] Anon, Reactive Systems Inc, 2011 Finding Bugs in C Programs with Reactis
for C [online] Available from:
https://www.reactive-systems.com/c-runtime-errors.html [accessed 28/10/2020]

[12] Brailsford, S., Potts, C. and Smith, B., 1999. Constraint satisfaction problems:
Algorithms and applications. European Journal of Operational Research, [online]
119(3), pp.557-581. Available at:
https://www.sciencedirect.com/science/article/pii/S0377221798003646
[Accessed 1 November 2020].

[13] Ovstedal, E., 1991. Using Fault Tree Analysis in Developing Reliable Software.
IFAC Proceedings Volumes, [online] 24(13), pp.77-82. Available at:
https://www.sciencedirect.com/science/article/pii/S1474667017513695
[Accessed 1 November 2020].

[14] Murphy, C. Kim, E., Kaiser, G. Cannon, A, 2008, Backstop: a tool for debugging
runtime errors [online] Available at:
https://www.cs.columbia.edu/wp-content/uploads/sites/7/2011/03/3477-Murph
y-Backstop-SIGCSE2008.pdf [Accessed 3 November 2020].

[15] Mitchell, G., 2000. Placebo defense: Operation desert mirage? The rhetoric of
patriot missile accuracy in the 1991 Persian Gulf War∗. Quarterly Journal of
Speech, [online] 86(2), pp.121-145. Available at:
https://nca.tandfonline.com/doi/abs/10.1080/00335630009384286 [Accessed 5
November 2020].

[16] G. Le Lann, "An analysis of the Ariane 5 flight 501 failure-a system
engineering perspective," Proceedings International Conference and Workshop on
Engineering of Computer-Based Systems, Monterey, CA, USA, 1997, pp. 339-346,
doi: 10.1109/ECBS.1997.581900. Available at:
https://ieeexplore.ieee.org/abstract/document/581900 [Accessed on 5
November 2020].

[17] Lazic, Ljubomir. (2006). Software Errors Analysis and Detection:A Survey.
Available at:
https://www.researchgate.net/publication/323548522_Software_Errors_Analysis
_and_DetectionA_Survey [Accessed on 5 November 2020].

https://www.reactive-systems.com/c-runtime-errors.html
https://www.sciencedirect.com/science/article/pii/S0377221798003646
https://www.sciencedirect.com/science/article/pii/S1474667017513695
https://www.cs.columbia.edu/wp-content/uploads/sites/7/2011/03/3477-Murphy-Backstop-SIGCSE2008.pdf
https://www.cs.columbia.edu/wp-content/uploads/sites/7/2011/03/3477-Murphy-Backstop-SIGCSE2008.pdf
https://nca.tandfonline.com/doi/abs/10.1080/00335630009384286
https://ieeexplore.ieee.org/abstract/document/581900
https://www.researchgate.net/publication/323548522_Software_Errors_Analysis_and_DetectionA_Survey
https://www.researchgate.net/publication/323548522_Software_Errors_Analysis_and_DetectionA_Survey

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 73

[18] Baldoni, R., Coppa, E., D’elia, D., Demetrescu, C. and Finocchi, I., 2018. A
Survey of Symbolic Execution Techniques. ACM Computing Surveys, [online]
51(3), pp.1-39. Available at: http://goo.gl/Hf5Fvc [Accessed 8 November 2020].

[19] Microsoft, 2020. Role Of Symbolic Execution In Software Testing, Debugging
And Repair. [video] Available at:
https://www.youtube.com/watch?v=pkm3ItOLfRs&ab_channel=MicrosoftResear
ch [Accessed 8 November 2020].

[20] Coursera, 2020. Basic Symbolic Execution. [video] Available at:
https://www.coursera.org/lecture/software-security/basic-symbolic-execution-U
9R38 [Accessed 8 November 2020].

[21] MIT OpenCourseWare, 2020. Symbolic Execution. [video] Available at:
https://www.youtube.com/watch?v=yRVZPvHYHzw&ab_channel=MITOpenCours
eWare [Accessed 8 November 2020].

[22] Hořeňovský, M., 2018. codingnest.com. [Online] Available at:
https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/
[Accessed 08 November 2020].

[23] R.KhudaBukhsh, A., 2015. www.sciencedirect.com. [Online] Available at:
https://www.sciencedirect.com/science/article/pii/S0004370215001678
[Accessed 08 November 2020].

[24] Sanchit Batra, A. R., 2018. cse.buffalo.edu. [Online] Available at:
https://cse.buffalo.edu/~erdem/cse331/support/sat-solver/index.html#:~:text=
A%20SAT%20solver%20is%20a,UNSAT%20if%20it%20is%20not. [Accessed 08
November 2020].

[25] Budinich, M., 2019. The Boolean SATisfiability Problem in Clifford algebra.
Theoretical Computer Science, [online] 784, pp.1-10. Available at:
https://www.sciencedirect.com/science/article/pii/S0304397519301938
[Accessed 11 November 2020].

[26] Meudec, C., 2001, AT Gen: Automatic Test Data Generation using Constraint
Logic Programming and Symbolic Execution Software Testing Verification and
Reliability. [Online] Available at: https://doi.org/10.1002/stvr.225 [Accessed 11
November 2020].

http://goo.gl/Hf5Fvc
https://www.youtube.com/watch?v=pkm3ItOLfRs&ab_channel=MicrosoftResearch
https://www.youtube.com/watch?v=pkm3ItOLfRs&ab_channel=MicrosoftResearch
https://www.coursera.org/lecture/software-security/basic-symbolic-execution-U9R38
https://www.coursera.org/lecture/software-security/basic-symbolic-execution-U9R38
https://www.youtube.com/watch?v=yRVZPvHYHzw&ab_channel=MITOpenCourseWare
https://www.youtube.com/watch?v=yRVZPvHYHzw&ab_channel=MITOpenCourseWare
https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/
https://www.sciencedirect.com/science/article/pii/S0004370215001678
https://cse.buffalo.edu/~erdem/cse331/support/sat-solver/index.html#:~:text=A%20SAT%20solver%20is%20a,UNSAT%20if%20it%20is%20not.
https://cse.buffalo.edu/~erdem/cse331/support/sat-solver/index.html#:~:text=A%20SAT%20solver%20is%20a,UNSAT%20if%20it%20is%20not.
https://www.sciencedirect.com/science/article/pii/S0304397519301938
https://doi.org/10.1002/stvr.225

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 74

[27] Docs.adacore.com. 2020. Formal Verification With Gnatprove — SPARK
User's Guide 22.0W. [online] Available at:
https://docs.adacore.com/spark2014-docs/html/ug/en/gnatprove.html
[Accessed 11 November 2020].

[28] Adacore.com. 2020. About Ada - Adacore. [online] Available at:
https://www.adacore.com/about-ada [Accessed 14 November 2020].

[29] Kulkarni, M., 2020. ECE 468 - Fall 2017. [online] Engineering.purdue.edu.
Available at:
https://engineering.purdue.edu/~milind/ece468/2017fall/assignments/step2/
[Accessed 14 November 2020].

[30] Point, T., 2020. C Library Function - Malloc() - Tutorialspoint. [online]
Tutorialspoint.com. Available at:
https://www.tutorialspoint.com/c_standard_library/c_function_malloc.htm
[Accessed 29 November 2020].

[31] Stanbrough, D., n.d. Exceptions. [online] Goanna.cs.rmit.edu.au. Available at:
http://goanna.cs.rmit.edu.au/dale/ada/aln/11_exceptions.html [Accessed 7
February 2021].

[32] Barnes, J. and Fauconnier, H., 2001. Programmer en ADA 95. 2nd ed. Paris:
Vuibert, p.117.

[33] Europe, A., 2006. Type Conversions. [online] Adaic.org. Available at:
<https://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-6.ht
ml> [Accessed 17 February 2021].

[34] Europe, A., 2006. Indexed Components. [online] Ada-auth.org. Available at:
<http://www.ada-auth.org/standards/12rm/html/RM-4-1-1.html> [Accessed 17
February 2021].

[35] npm, D., 2021. Packages and modules | npm Docs. [online] Docs.npmjs.com.
Available at: <https://docs.npmjs.com/packages-and-modules> [Accessed 24
February 2021].

https://docs.adacore.com/spark2014-docs/html/ug/en/gnatprove.html
https://www.adacore.com/about-ada
https://engineering.purdue.edu/~milind/ece468/2017fall/assignments/step2/
https://www.tutorialspoint.com/c_standard_library/c_function_malloc.htm
http://goanna.cs.rmit.edu.au/dale/ada/aln/11_exceptions.html
https://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-6.html
https://www.adaic.org/resources/add_content/standards/05rm/html/RM-4-6.html
http://www.ada-auth.org/standards/12rm/html/RM-4-1-1.html
https://docs.npmjs.com/packages-and-modules

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 75

[36] Yarn, D., 2021. Plug'n'Play. [online] Yarnpkg.com. Available at:
<https://yarnpkg.com/features/pnp#the-node_modules-problem> [Accessed 24
February 2021].

[37] Bar-Gil, G., 2020. NPM vs. Yarn: Which Package Manager Should You
Choose?. [online] WhiteSource. Available at:
<https://www.whitesourcesoftware.com/free-developer-tools/blog/npm-vs-yarn-
which-should-you-choose/> [Accessed 24 February 2021].

[38] TypeScript, D., 2021. [online] Typescriptlang.org. Available at:
<https://www.typescriptlang.org/docs/handbook/intro.html> [Accessed 24
February 2021].

[39] contributors, M., 2021. JavaScript | MDN. [online] Developer.mozilla.org.
Available at: <https://developer.mozilla.org/en-US/docs/Web/JavaScript>
[Accessed 24 February 2021].

[40] Jansen, P., 2021. index | TIOBE - The Software Quality Company. [online]
Tiobe.com. Available at: <https://www.tiobe.com/tiobe-index/> [Accessed 24
February 2021].

[41] Team, S., 2010. The SPARK Ravenscar Profile. [online] Docs.adacore.com.
Available at:
<https://docs.adacore.com/sparkdocs-docs/Examiner_Ravenscar.htm>
[Accessed 6 March 2021].

[42] Campbell, D., 2019. The many human errors that brought down the Boeing 737
Max. [online] The Verge. Available at:
<https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-proble
ms-human-error-mcas-faa> [Accessed 6 March 2021].

[43] Duffy, R., 2020. Leaving Cert: About 6,500 students set to receive higher
grades after coding error. [online] TheJournal.ie. Available at:
<https://jrnl.ie/5218969> [Accessed 6 March 2021].

[44] SUNDARAM, S., 2019. Securing the Future of Autonomous Driving with
Adacore | NVIDIA Blog. [online] The Official NVIDIA Blog. Available at:
<https://blogs.nvidia.com/blog/2019/02/05/adacore-secure-autonomous-driving
/> [Accessed 6 March 2021].

https://yarnpkg.com/features/pnp#the-node_modules-problem
https://www.whitesourcesoftware.com/free-developer-tools/blog/npm-vs-yarn-which-should-you-choose/
https://www.whitesourcesoftware.com/free-developer-tools/blog/npm-vs-yarn-which-should-you-choose/
https://www.typescriptlang.org/docs/handbook/intro.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.tiobe.com/tiobe-index/
https://docs.adacore.com/sparkdocs-docs/Examiner_Ravenscar.htm
https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa
https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa
https://jrnl.ie/5218969
https://blogs.nvidia.com/blog/2019/02/05/adacore-secure-autonomous-driving/
https://blogs.nvidia.com/blog/2019/02/05/adacore-secure-autonomous-driving/

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 76

[45] Rommel, C., 2018. Controlling Costs with Software Language Choice — How
Ada Can Help. [online] AdaCore. Available at:
<https://www.adacore.com/papers/controlling-costs-with-ada> [Accessed 6
March 2021].

[46] Meudec, C., 2021. Midoan Mika: Test data generation for Ada. [online] Mika
User Manual. Available at:
<http://www.midoan.com/download/current/user_manual.pdf> [Accessed 6
March 2021].

[47] Code, V., 2021. Visual Studio Code User and Workspace Settings. [online]
Code.visualstudio.com. Available at:
<https://code.visualstudio.com/docs/getstarted/settings> [Accessed 22 April
2021].

[48] Hatton, L., 1999. The Ariane 5 bug and a few lessons. [online] Leshatton.org.
Available at: <https://www.leshatton.org/Documents/Ariane5_STQE499.pdf>
[Accessed 24 April 2021].

[49] Feldman, M., 2014. Who's Using Ada?. [online] Www2.seas.gwu.edu.
Available at: https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
[Accessed 10 January 2021].

[50] Overflow, S., 2019. Stack Overflow Developer Survey 2019. [online] Stack
Overflow. Available at:
<https://insights.stackoverflow.com/survey/2019#development-environments-an
d-tools> [Accessed 26 April 2021].

[51] Bond, W., 2011. How to Create a Sublime Text 2 Plugin. [online] Code Envato
Tuts+. Available at:
<https://code.tutsplus.com/tutorials/how-to-create-a-sublime-text-2-plugin--net-2
2685> [Accessed 26 April 2021].

[52] Npp-user-manual.org. n.d. Extend functionality with plugins | Notepad++ User
Manual. [online] Available at: <https://npp-user-manual.org/docs/plugins/>
[Accessed 26 April 2021].

[53] Marketplace.visualstudio.com. 2021. All categories Extensions for Visual
Studio Code in Marketplace. [online] Available at:

https://www.adacore.com/papers/controlling-costs-with-ada
http://www.midoan.com/download/current/user_manual.pdf
https://code.visualstudio.com/docs/getstarted/settings
https://www.leshatton.org/Documents/Ariane5_STQE499.pdf
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://code.tutsplus.com/tutorials/how-to-create-a-sublime-text-2-plugin--net-22685
https://code.tutsplus.com/tutorials/how-to-create-a-sublime-text-2-plugin--net-22685
https://npp-user-manual.org/docs/plugins/

Ada Runtime Error Generator | Research Document

C00231080 | Derry Brennan | Page 77

<https://marketplace.visualstudio.com/search?target=VSCode&category=All%20
categories&sortBy=Installs> [Accessed 26 April 2021].

[54] Code, V., 2021. Your First Extension. [online] Code.visualstudio.com. Available
at: <https://code.visualstudio.com/api/get-started/your-first-extension>
[Accessed 28 April 2021].

[55] Code, V., 2021. Extension Guidelines. [online] Code.visualstudio.com.
Available at:
<https://code.visualstudio.com/api/references/extension-guidelines> [Accessed
28 April 2021].

https://marketplace.visualstudio.com/search?target=VSCode&category=All%20categories&sortBy=Installs
https://marketplace.visualstudio.com/search?target=VSCode&category=All%20categories&sortBy=Installs
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/references/extension-guidelines

